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ABSTRACT: Motivated by the recent conjecture of Qoguri, Strominger and Vafa, we com-
pute the semi-canonical partition function of BPS black holes in N' = 4 and N = 8 string
theories, to all orders in perturbation theory. Not only are the black hole partition func-
tions surprisingly simple; they capture the full topological string amplitudes, as expected
from the OSV conjecture. The agreement is not perfect, however, as there are differences
between the black hole and topological string partition functions even at the perturbative
level. We propose a minimal modification of the OSV conjecture, in which these differences
are understood as a nontrivial measure factor for the topological string.
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[Al. Nonperturbative corrections to the A’ =4 OSV transform

1. Introduction

A simple relation between the partition function of BPS black holes and that of topological
strings, of the form

Zpi(p,¢) =Y _ Qi (p,9)e " = | Ziop(p + i) %, (1.1)
q

was recently proposed by Ooguri, Strominger and Vafa (OSV) in [I]. Subsequently, much
work has been done to clarify and test this proposal [J-[I5]. Clarification is definitely
needed, as a quick glance at ([.T)) shows that the original proposal of OSV is schematic at
best — taking it literally immediately leads to problems. For instance, the LHS of ([.) is
manifestly invariant under integer shifts of ¢, ¢ — ¢ + 2wik, while the RHS is generally
not. Another point that needs clarification is the definition of black hole partition function
Qpr(p,q): in general, there are multiple “supersymmetric indices” which have the correct

asymptotics and could potentially be used in ([L.1).



Since the precise formulation of the OSV proposal is currently lacking, it is especially
important to have examples of black holes whose degeneracies are (a) known exactly, and
(b) sufficiently simple that the OSV transform Zpp(p, ¢) can be evaluated explicitly.

The OSV conjecture was originally formulated for BPS black holes in N = 2 com-
pactifications of string theories. The classical entropy (and certain subleading corrections)
of such black holes has been understood microscopically [Ld, [[7. However, general for-
mulas for the exact degeneracies of large N' = 2 black holes are not known.! The only
large N = 2 black holes whose exact degeneracies are known are those derived from “com-
pactifications” on certain local Calabi-Yau 3-folds. Recent progress along this direction
includes [B, @

The difficulty of deducing exact degeneracies for black holes in N' = 2 compactifica-
tions stems from the complexity of the underlying Calabi-Yau. This motivates the study of
compactifications and black holes with more supersymmetry, which typically involve sim-
pler Calabi-Yaus. The two examples which we will study in this paper are type ITA string
theory compactified on K3 x T2, which has V' = 4 supersymmetry in four dimensions; and
type ITA compactified on 7%, which has A" = 8 supersymmetry in four dimensions.

The most well-studied black holes in this context are the small 1/2 BPS black holes
in N = 4 compactification on K3 x T? [, §, [(§]. These are known as Dabholkar-Harvey
states [[L§, [[], because they are dual to wound fundamental strings in the dual heterotic
description. Their exact degeneracies are quite simple, being given by the partition function
of the heterotic string. Unfortunately, since their classical entropy vanishes, it is not entirely
clear whether the OSV proposal should apply to these black holes.

In order to have nonvanishing classical entropy, BPS black holes in ' =4 and N =8
string theories must preserve exactly 1/4 and 1/8 of the supersymmetries, respectively. For-
mulas for the exact degeneracies of such black holes were recently derived in (] and [21].
(The formula for the exact degeneracies of 1/4 BPS black holes was conjectured by Dijk-
graaf, Verlinde and Verlinde nearly 10 years ago in [PJ].)

These exact degeneracies have all been tested against the topological string amplitudes
in some way or another [, B, [3, B, [[4]. In all these tests, however, the approach has been
to either Legendre or Laplace transform the topological string amplitudes and compare
them with the black hole entropy. Only partial agreement has been found this way, in part
because of various ambiguities, e.g. in the contour and measure of integration, inherent in
this approach.

In this paper we will adopt a complementary viewpoint - we will directly compare the
semi-canonical black hole partition function in NV = 4 and N = 8 string theories with
the topological string partition function. This approach has several advantages. Since
it involves a sum over charges instead of an integral over potentials, it avoids the ambi-
guities regarding the contour and measure of integration. Moreover, the direct approach
can, in principle, provide a non-perturbative completion of the topological string ampli-
tudes.

!The exact degeneracy of certain classes of small A" = 2 black holes is known (see e.g. [E]) By large
(small), we mean black holes with nonvanishing (vanishing) classical horizon area.



Regardless of how one performs the comparison with the topological string, there is
always one ambiguity of the OSV conjecture in the context of ' = 4 and N' = 8 string
theories. This comes from the extra charges associated with the KK gauge fields. These
charges are not present in N' = 2 compactification.? Since the original proposal of OSV
was in the context of N = 2 compactification, it is unclear whether we should sum over
these extra charges when computing the semi-canonical partition function ([.1)). On the
other hand, there is good reason to suppose that the attractor mechanism applies just as
well to these extra charges (see e.g.[Rd)).

Perhaps the most straightforward prescription is to turn off these extra charges and
compare the “reduced” OSV transform of £2(p, q) with a similarly reduced topological string
partition function. The other natural prescription is to perform a “full” OSV transform of
the exact degeneracies with respect to all the charges. To parameterize our ignorance, we
will introduce an integer n and consider the most general OSV transform

Z@we)= 3. > Qpr(p.q)e? (1.2)
q1qn da
where ¢, denote the charges in /' = 2 graviton and vector multiplets, and ¢, ..., g, denote
the extra charges associated with the N = 2 gravitini multiplets. Here Qpg(p,q) is the
proper supersymmetric index of the black holes as defined in [p4, R, R1]. Our goal for the
rest of this paper will be to calculate, and then to interpret (E)
For various technical reasons, we will restrict ourselves to vanishing D6 brane charge;
other than this restriction, our results will be valid for arbitrary charge configurations.
Interestingly, we will see that the answer for any n can be expressed in terms of the
topological string amplitude in simple ways. In particular, for the “full” OSV transform,

we find
Zg 0.0) = D" | Zuopllgrap "V + OV %) (13)
d—+2mik

where Vx is the volume of the Calabi-Yau X = K3 x T2 or T, and b; is the first Betti
number of X. Additionally, we find that in the A/ = 8 case, the nonperturbative correc-
tions can be summed up completely, yielding a closed-form expression for the exact OSV
transform.

With a bit of guesswork, we also propose the following unified presentation of the most
general OSV transform:

Zj(gnlzr(p, o) = Z |Z£0p|2\/ det g(@ + non pert . (1.4)
d—p+2mik

where |Z]

morphic anomaly, and ¢(? is a “quantum-corrected” metric on the moduli space of the

Op]2 is the square of the topological string partition function including the holo-
topological string on X (to be defined below).

This paper is organized as follows. In section J| we study the 1/8 BPS black holes in
N = 8 string theory; compute the semi-canonical partition function Zgg(p, ¢) including

2One way to see this is to note that in an A = 2 reduction of the full supersymmetry, these gauge fields
belong to N' = 2 gravitini multiplets, which do not arise in A/ = 2 compactification.



the nonperturbative corrections; and compare to the topological string. In section [ we
shall study the analogous problem for 1/4 BPS black holes in N = 4 string theory, although
the analysis of the nonperturbative corrections will be left to appendix A. Finally, section

summarizes our results and discusses the possible implications.

2. N = 8 Black holes

2.1 Preliminaries

In this section, we wish to consider the OSV transform of the exact degeneracies of 1/8
BPS N = 8 black holes. These black holes can be realized as wrapped branes and strings
in a type ITA compactification on 76. A formula for their exact degeneracies was derived
recently in [RI]. It takes the form

Ov=spg) = Y. 2<J3>2<—>2J3:d<J<p,q>>:74 dp F(p)e 2mir/®0) (2.1)
J3,BPS states

where the two ingredients of the RHS are:

1. F(p), a modular form

03(2p) n(2p)° 5/2_mi/8
F(p) = = ~ CpPl2em/%0 (14 .. ) (2.2)
n(4p)®  n(4p)*n(p)?
The ... represents an expansion in powers of e~ ™/2°_ These corrections contribute

order O(e‘QQ) terms to =g, which are expected to be non-perturbative from the
topological string point of view.

2. J(p,q), the unique quartic invariant of the A/ = 8 U-duality group, known as the
Cremmer-Julia invariant [25]. In a suitable basis (see e.g. [R, R7]), this invariant
takes the form

1
J=-Te(YZYZ) + (T Y Z)? — 4(PfY 4 PfZ) (2.3)

where Y and Z are 8 x 8 antisymmetric real matrices which encode the charges of

wrapped branes and strings.

From the N = 8 point of view Y and Z are naturally electric and magnetic charges.
However, in performing the OSV transform, we should assign the magnetic and electric
charges that are consistent with the coupling of A/ = 2 vector, graviton and gravitini

multiplets, as follows:

P —pt —p? Q —a —@
Y=(pT 0 -@|. Z=[d o —p]. (2.4)
P q 0 s 1’ 0
Here P and @ are 6 x 6 antisymmetric matrices, and qq, ¢2, p', p? are six-dimensional
vectors. These are divided into electric charges ga and magnetic charges p*, A =0,...,27,
as follows:
ar = {0, Qij» qu, a2}, p"={p°, P, p", p*}. (2.5)



Physically, P¥ and Q;; are identified with TS-wrapped D4 and D2 brane charges respec-
tively, with 4,5 = 1,...,6 representing the 1l-cycles of the 7. Meanwhile, q;; and go;
correspond to KK monopole and NS5 brane charges, respectively, while p'* and p?* cor-
respond to KK momentum and F-string winding charges, respectively. Finally, qp is DO
brane charge, while p? is D6 brane charge.

As mentioned in the introduction, we will focus exclusively on the case p° = 0 in this
paper. In this limit, one can check that (2.3) simplifies to

1
J = 4(p)° <(I0 + EDABC]AC]B> (2.6)

where A, B = 1,...,27 are the collective indices for the 27 electric and magnetic charges

other than ¢ or p¥, and we have defined
(p)® = Dapcp?pPp® = PIP + p'T Pp?, Dap = Dapcp®, DA Dpo =66 (2.7)

This result illustrates the advantages of assuming p° = 0, in the following way. Notice how
J ~ ¢* for p® = 0. On the other hand, for p® # 0, one can show that J ~ p°¢> for large
electric charges ¢. Since the black hole degeneracy grows like Qpr(p, q) ~ exp <7n /J(p, q))
in the large charge limit, convergence of the OSV transform ([.J) seems problematic for
p? # 0, while it is less so for p® = 0. Thus, in addition to simplifying the calculations con-
siderably, the restriction p® = 0 also improves the convergence of the OSV transform ([.3).

Now that we have described the various components of the exact degeneracy for-
mula (R.]), let us turn to evaluating the OSV transform

Zn=s(p.®) = Y Qu—s(p,q)e 0¥ ~14%" (2.8)

q0,9A

2.2 The full OSV transform

Let us start by rewriting the black hole partition sum

_ 0__ A
Zn=s(p,®) = Y Q=s(p,q)e ©? 917 (2.9)
q0,9A

= & > sz exp [ <4(Z)3 - %DAB(]AQB> - quﬁA} :

PO —pO+2mik0 ga

where we used (R.6) to express g in terms of J, and the sum over k° is in the range
0 < k% < 4(p)® — 1. The sum over J gives precisely the modular form F(i¢?/87(p)?)
defined in (R.). Meanwhile, we can evaluate the sum over g4 via Poisson resummation.3

Then we are left with?

In-spd) = Y @) FmT

¢0—0+27ik0 pA—pAt2mikA

- A C

3Due to the non-positive-definiteness of Dap, the sum over ga is, strictly speaking, not convergent. We

will regularize the divergence by performing a formal Poisson resummation. A more careful regularization
was considered in [[L5}, section 6]. In any event, we expect our results to be regularization independent.
“Here and throughout we will neglect overall numerical factors.



Finally, we can make use of the modular property of F(p),

F(p) = p2¢% F(~1/4p) (2.11)
with 63(2p)
() = emin/2738P) o2 ‘
Flp) = e 0% 1+0 (') (2.12)

and write (R.1() as

B _ /2mi(p)? > (772 (p)*  3Dapc ¢A¢BPC>
s _ 0\—11 3F < _ i
N=8(D, ®) ¢_}q§_:2mk(¢ )" (p) < A0 exp P PO

(2.13)
In the next subsection, we will see how this fairly simple expression becomes even simpler
when it is recast in terms of the topological string on 7.

2.3 Rewriting in terms of the topological string on 70

The topological string on T is essentially trivial. The prepotential consists of only a
tree-level term, determined by the intersection form on 7°:

(27i)3 D apctAtPtC

F;
Ztop =€ t0p7 Ftop = D)
gtop

(2.14)

Here t# are the Kéhler moduli of T6. Together with the topological string coupling Gtops
they are related to the magnetic charges and electric potentials defined above via the
attractor equations:

A x4 B pA +iph/m 4mi 4mi

_A _ptm e 2.15
X0~ P righm M T X0 T g0 (215

Keep in mind that we are considering only the case p° = 0 in this work. Notice also that we
have slightly generalized the notion of Fy,, to include the 12 moduli in the N = 2 gravitini
multiplets, t'* and t*!. This is well-motivated from U-duality, and we will see that it leads
the correct answer.

Another quantity of interest is the Kéahler potential of the underlying special geometry
(the factor of 1/ is for later convenience):

27
_ 1 —A
K
e = E Re X" 0pFiop (2.16)
A=0
For p® = 0, this is simply
2 3
e K = L;?O’) (2.17)

Now we are ready to recast the OSV transform in terms of the topological string on

TS. Using (P-14)-(R-17), we see that (R.IJ) can be written as

Zn=s= > | Zop|*lgtop|""eFF (ie7K). (2.18)
¢p—d+2mik



We stress that (R.1§) is only derived in the case p° = 0. We also note that the sum over
k¥ is restricted to the range 0 < k% < 4(p)3, although (p)? is large in the limit of small g,
while fixing the size of the T.

To highlight the g4, dependence, it is useful to rewrite (R.1§) in terms of the volume
of the T6:

Ve = |giople™ (2.19)
Then (R.1§) can be rewritten as
2 8 ~ ZVTG
ZN:S = E ‘Ztop’ ‘gtop‘ VTSF —‘ ‘2 (220)
bt 2mik Gtop

From (R.17), we see that this is essentially | Z;,,|? up to corrections that are nonperturbative
in gtop,

In—g = Z |Ztop|2|gt0p|8VT6 + nonpert . (2.21)
p—o+2mik

Interestingly, the nonperturbative corrections go like ~ e=27Vre/ lgtor” . We will discuss
possible interpretations of this in section {.

2.4 The general OSV transform

Before we go on to the case of 1/4 BPS N = 4 black holes, let us take a moment to
consider a “reduced” OSV transform which is natural from the point of view of N = 2
supersymmetry. Here we transform Zx—s(p, ¢) only with respect to the the charges ¢p and
Qij (i,7 =1,---,6) which are associated to N' = 2 vector multiplets. The extra magnetic
charges p', p? and electric potentials ¢!, ¢? in N = 2 gravitini multiplets are turned off.
The calculation of this “reduced” BH partition function is almost identical to the previous
section, and the result is

Zits = Y | Zioplloropl e F (ie™")
d—p+2mik
_ o 3L
= Z | Zsop || Gtop] Ve + nonpert .. (2.22)
. T6
¢p—p+2mik

For the sake of completeness, let us also compute the most general “reduced” partition
function, with 0 < n < 12 of the gravitini charges summed up:

Z_/(\;L):8 = Z |Zt0p|2|gtop|8(VT6)n/671 F (ieiK)
d—p+2mik
= Z |Zt0p|2|gtop|8(VT6)n/671 + nonpert . (2.23)
d—p+2mik

So, for instance, n = 0 corresponds to (R.29), while n = 12 corresponds to (R.20)—
(2.21)). It is amusing to note that the “half-reduced” transform with n = 6 gives the
simplest result, essentially |Z,,|? with no volume factor.



3. N =4 Black holes

3.1 Preliminaries

Having computed the OSV transform of the exact N/ = 8 degeneracies, let us now consider
the analogous problem for the exact degeneracies of 1/4 BPS A = 4 black holes. We will
consider type IIA string theory compactified on K3 x T2. The BPS black holes can then be
described as supersymmetric bound states of branes and strings wrapped on various cycles
in K3 x T2, A formula for their exact degeneracy was conjectured in R3] and derived
in [R{). It takes the form®

eﬂi(pq72n+0'qg+(2y—1)Qe'Qm)
®(p,0,v)

3
Wealp.)= D (P = e an) =  dpdods
J3,BPS states
(3.1)

where the ingredients of the RHS are

1. ®(p,0,v), the unique weight 10 automorphic form of the modular group Sp(2,7Z).
Although quite complicated in general, ® simplifies near “rational quadratic divisors”
(RQDs), along which 1/® has double poles. For details about the approximation of
® by rational quadratic divisors, see [RJ] and also [, section 3]. The divisor whose
contribution dominates the asymptotic degeneracy is

po+v—1v?=0. (3.2)

The contributions of the other divisors are suppressed by (’)(e*QQ), which is expected
to be non-perturbative from the point of view of topological strings. (In appendix
A, we study the effect of these subleading divisors and verify that they are indeed
nonperturbative.) Working perturbatively in 1/@Q, we can make the approximation

1 o12 oo — 12 —24 p o4 N
®(p,0,v) (po+u—u2)2"< pn ) 77( pU_V2> +0 ((po +v —12)°)

2. ¢2, ¢, and qe - g, invariants of the SO(6, 22; Z) subgroup of the full N = 4 U-duality
group SL(2,7Z) x SO(6,22;7Z). These invariants encode the charges of various branes
and strings wrapped on the cycles of K3 x T2. Explicitly, we have

gz = 2q0p" + C"Nqrgn
0 = 20°q1 + Cunp™p™
Ge qm = 1’00 +1' 1 —pMan (3.4)
where M, N =2,...,27, and

CMNxMyN _ C'abl“ayb + :c24y27 + :c25y26 + :c26y25 + x27y24 (35)

®Note the extra factor of (—1)%'% relative to @] This factor was missed previously, and it is a
consequence of the 4D-5D correspondence @, @] We will see below that this factor is essential in order
to obtain the correct OSV transform.



with Cyp, a = 2,...,23 the intersection form on H?(K3). Here the electric charges are
given by the following: qq is DO-charge; q; is T?-wrapped D2 charge; q,,a = 2,...23
is K3-wrapped D2 charge; and ¢;,7 = 24,...,27 are momentum and winding modes
of K3 x S'-wrapped NS5 branes. Meanwhile, the magnetic charges correspond to
the following: p" is D6-charge; p! is K3-wrapped D4 charge; p® are T? x (K3 cycle)-
wrapped D4 charge; and p’ are F-string T2 momentum /winding modes.

3.2 The full OSV transform

Just as in the A" = 8 case, we shall restrict to the case p° = 0 which greatly simplifies the
calculations. We will use the shorthand notation

Q=q¢}, P=4qy,, R=d an (3.6)
The black hole partition sum can be written

Zn=4(p,®) = Z d(Q, P, R)efqodﬂfqlqslfqmw
40,91,9M
=@h7?> > D dQPR
aM @Ol -0 14 27ik0 1 Q,R

0 1
X exp [—j—pl(Q - CMNquN) - j:—l(R +quM) — g™ (3.7)

where k%! are summed in the range 0,---,p* — 1 (note that Q is even). The sum over Q
and R yields (by definition)

'BH‘Q

L.
> d(Q.P,R)e =

1 wipP
R 7{ e
= ¢ dp 0 1 . (3.8)
2 (0= 1o v = o 1 D)

O = oV T omip

The idea is to compute the contour integral in (B.§) in terms of the residues at the relevant
RQDs. As discussed above, the dominant contribution to the integral is expected to be

given by the RQD (B.2)-(B.3). Integrating p around this RQD yields

wipP mipP
j{dpei—oloa € 4.
— A —
2(p,72,17) N
p P=Px, O=0x, V=Vx
10 mips P /(—k2) /(L2)
o,'e n n
— * miP—24—2= 24— | +... (3.9)
n(—z)*n(5:)* n(—&) n(%)
where we have defined
T omipt” YT 2mipt 20 T Oy 2wiple® '

and ... refers to the contributions of the other RQDs. In appendix A, we study these
contributions, and we show that they are indeed nonperturbative in g, relative to the
dominant contribution (B.9).



This leaves the sum over gps, which can be evaluated using a (formal) Poisson resum-
mation (as for A/ = 8, there are issues of convergence we are glossing over, since CM¥ is
not positive-definite):

0 1
} :e;;ﬁcMNQMQN—(ﬁ—lpM-i—¢M)QM o

am
1N\ 13 c (LM 11 pMy(p1gN £l
p _YMN
_ <@> S e T . (3.11)
¢JVI_,¢JVI +2mikM
Combining this with (B.9) and (B.10), (B.7) becomes after some algebra

CyuN (7r2p1pMpN72¢1pM¢N7p1¢>M¢N) )

Z pl exp < 540

IN=4 =

0)3 141 11,41
d—p+2mik ( ) n(ﬂpid)ol(b )2477(71707;;—0“2b )24
1 mpt—igt 1Tl tigt
) n (F0—) 0 (Far )
x |miChpnp™Mp — 24 Wpfi- - ﬂpfi- | e (312)

In the next subsection, we will see how this rather complicated result of the OSV transform
has an extremely simple interpretation in terms of the topological string on K3 x T2

3.3 Rewriting in terms of the topological string on K3 x T2

The topological string on K3 x T2 is only slightly less trivial than the topological string
on T9. The prepotential consists of a tree-level term together with a one-loop correction
coming from worldsheet instantons:

(2mi)2CntM V!
20y

Here t!, t™, tN, M,N = 2,...,27 are the Kihler moduli of K3 x T2. In particular,

t! corresponds to the complexified Kihler modulus of 72. Just as for A/ = 8, we have

L — 24logn(t"). (3.13)

generalized the notion of Fi,p, to include the 4 moduli in the N' = 2 gravitini multiplets,
24927 Again, this is well-motivated from U-duality, and it correctly reproduces the result
of the OSV transform.

The attractor equations work exactly the same as for N' = 8 (R.1§). Explicitly, we

have (recall we are setting p° = 0)

o _ oM gt g T il 4 (3.14)
- Z¢O ) - Z¢O gtop - ¢0 .
Finally, we find the Kéahler potential in this case to be:
ol —idl ol Lidl
K 2Zp1 ‘ MN 24nl( pi¢ol¢ ) 2477/( pi;LOW) )
= _W miCynp P — Tpl—igl - Tpl il (3'15)
W(T) U(T)

Notice that we have generalized slightly the definition of the Kéhler potential to include the
one-loop topological string amplitude (the second and third terms of (B.1), due to world

K

sheet instantons). Normally, e™* is computed using the tree-level prepotential alone. Thus,

we can think of e~ defined in (B.15) as a “quantum-corrected” Kihler potential.

,10,



Now we have all the ingredients necessary to interpret the OSV transform (B.12) in
terms of the topological string on K3 x T2. In fact, using (B.13)-(B.15), the complicated
result (B.12) simplifies considerably:

ZN=4 = Z |Zt0p|2|gtop|2€_K + - (316)
¢p—p+-2mik

Again, keep in mind that we have made the crucial restriction p’ = 0 in deriving (B.14).
We also recall from (B.7) that the sum over ¢ and ¢' shifts only runs over the range
0<k k' <pl.

Once again, we can rewrite the answer in terms of the (quantum-corrected) volume of

Visxr2:
Viesxr2 = |gtop|2€_K (3.17)
Then (B.16) becomes even simpler,
Zn=4= Z | Ziop|*Vicaxr2 + -+ - (3.18)
¢p—p+2mik

This should be compared with the analogous A’ = 8 result (R.21)). Aside from the factors
of giop appearing in the latter, which could perhaps be absorbed into the definition of Z,,
we see that the two results are in complete agreement.

3.4 The general OSV transform

Once again we can transform the black hole degeneracy only with respect to only ¢¢ and
the charges q,—1,... .23 which are associated to N = 2 vector multiplets. The calculation is
nearly identical to the full transform discussed above; the only difference is the power of
pt/¢° in (B.11) becomes 11 instead of 13. The resulting “reduced” BH partition function
is

Vis

= Y |l (3.19)
b +-2mik T
where we have defined V2 = [Imt!| = 7;5—1’1 and Vs = Vﬁ}‘i;ﬂ

Finally, let us also consider the most general “reduced” partition function obtained by
summing up 0 < n < 4 gravitini charges. The result is:

ZP 0= S | ZiopPViea (V)2 (3.20)
d—p+2mik

4. Summary and discussion

4.1 Summary of results

In the previous sections we have evaluated the OSV transform for 1/4 and 1/8 BPS black
holes in type ITA compactification on K3xT? and T, respectively. Apart from the require-
ment of vanishing D6 brane charge (p° = 0), the black holes we considered had completely
general charge configurations. In particular, they could either include the charges in N' = 2

gravitini multiplets, or not.

— 11 —



In all cases, we found that the results take the form

750 (p. ¢ ZQBH e =3 G (p, ¢+ 2rik) (41)
kel
with
G (p,0) = |Z250p|2 X (simple factor) (4.2)

where n denotes the number of gravitini charges being summed over (n = 4 and n = 12
for the full N' =4 and N = 8 transforms, respectively), and the precise form of the simple
factor depends on the transform and degeneracy being considered.

In more detail, we found that up to nonperturbative corrections in g, the answer for
G was

G\ (0, 0) = | Ziop|?|Grop|* (Vips)™/6 7
G\ (9. 8) = | Ziop|*Vics (Vi) /2 (4.3)

In addition, we were able to sum up the nonperturbative corrections to the N’ = 8 answer,
yielding an exact result in this case:

n n/6-1 5 [ Vs
G20, 0) = g Ploen (Vo)1 F (225 ) .
op

with the modular form F(p) given by (B.13).

Despite the discrepancies from |Z;,p|?, the OSV transforms of the N' = 4 and N/ = 8
degeneracies have very similar structures. Clearly, there are patterns here that need to be
better understood!

4.2 The holomorphic anomaly and the metric on moduli space

Let us now examine the most general OSV transforms (2.29) and (B.2() in more detail. We
can write them in terms of a natural metric on the space of X’s - the one that governs
the kinetic term of the corresponding vector fields in supergravity:

o\ = opoge K = ReaAath“” (4.5)

where the (cl) superscript denotes the classical tree-level contribution; and A, = 0,...,
23 +n for K3 xT? and A,Y = 0,...,15 + n for T%. A short calculation using the
appropriate Ft((f;) shows that the determinant of g{) takes the form (disregarding overall
numerical factors)

det gD = (Im tH) 2 (V) 12)? (K3 x T?)

det g = (Ve )S+7/3 (T°) (4.6)

Therefore, the general OSV transforms (2.23) and (B.2() can be written nicely in terms

of this metric as
GO (p9) = |24,y et g ( d)> (4.7)
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where X = K3 x T? or T%, and

4.8
| Ziop|? et X =1T6. (48)

;2 | Ziop|? (Tm 1) =12 X = K3 xT?
|Ztop| =
Notice how the explicit n dependence has been completely absorbed into the determinant

of the metric. In particular, |Z] is independent of n. In the case of K3 x T2, we

2
O;
recognize \ZI{OPP to be the square (ff the topological string partition function including the
holomorphic anomaly 2!

The factor e* in the N/ = 8 case is more mysterious, since the topological string on
T has no holomorphic anomaly. Let us consider the special case when only the Kéhler

moduli ¢!, #2,¢3 are turned on, and then
e = |grop > Imt Tm#?Tmt®) .. (4.9)

Apart from the factor |gip|%, which also showed up in (), the RHS of ({.9) is identical
to the 1-loop holomorphic anomaly in toroidal orbifold models, such as T%/Z3 x Z3. We
suspect that ([.9) may be interpreted as the holomorphic anomaly of a modified genus 1
amplitude defined by a new index. It would be interesting to understand this.
Although ([7) is fairly nice overall, it does contain the rather ugly factor % We
X

will attempt to explain this factor as follows. It differs from unity only in the case of
X = K3 x T?, so let us focus on that case. From the form of det g(®) in ([4), it is
tempting to propose the existence of a “quantum-corrected” metric on the space of X*’s,
g9, whose determinant gives the quantum-corrected volume, i.e.

det ¢@ = (Im t")'0F"2 Va0 (4.10)

Then in terms of this metric, ([.7) reduces to

G (p,§) = |Zipp[*\/ det g0 (4.11)

and the calculation of the OSV transform (1)) becomes

Zd) = > |Ziy[*\/det g@ (4.12)
P—d+2mik

where again, all of the explicit n dependence is contained in the determinant of the metric.
Note that ({.11)-({.19) also apply to X = T, since in that case it is natural to suppose
that ¢(@ = g(ch).

Introducing a quantum-corrected metric ¢@ may seem ad hoc, but evidence for its
existence comes from the following observation. If we suppose that the quantum corrections
to the metric are somehow the result of the one-loop worldsheet instanton corrections
in (B.13), then it is natural to assume that

Sgas = 9\% — g\a (4.13)
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only has nonzero components for A, ¥ = 0,1 and is a function only of X° and X'. Imposing
that dg be real, we find that the nonzero components of §¢(?) are given uniquely by

2 /(41 112 _ 1
(5900 5901) _ 24{g1op| Re (77 (t )> ( ] Ret ) (4.14)

d0g10 9911 Imt! n(th) —Ret! 1

The uniqueness and the simplicity of (l.14) strongly suggests that the idea of a quantum-

corrected metric on the space of X*’s should be taken seriously.

To summarize, eq. ([.11))—([f.19) provide a unified description of the most general OSV
transform, for both N' =4 and N' = 8 supersymmetry, in terms of the topological string
amplitude with holomorphic anomaly and the quantum metric on the moduli space. The
latter provides a natural measure for the wavefunction interpretation of Zi,,. A similar
measure factor was proposed in [f] (see e.g. eq. (6.6) of that paper); however, we note that

our answer differs significantly from that of [f].

4.3 D-instantons

As discussed in [I§] and the introduction, the sum over shifts ¢ — ¢ + 2mik in ([.1)
is entirely expected.® After all, the OSV transform involves a sum of e~9? over integral
charges ¢; therefore the result must be periodic in imaginary ¢. However, the interpretation
of the sum from the topological string point of view is intriguing.

First, restricting to the case p° = 0, we have ¢° = g. Thus, the periodicity in
imaginary ¢° is reminiscent of the periodicity in the theta angle in Yang-Mills theory. The
latter periodicity signals the quantization of instanton charges, and so one might expect
the periodicity in imaginary ¢° to be related to the quantization of D-instanton charges.

In fact, the OSV transform

2

(q0 + qat™) (4.15)

g . 47

D pa)e =Y Qp,q) (=) exp |-

Gtop
q q
can be interpreted as an sum over D-instanton contributions in the topological B-model.
Our result can then be thought of as a relation between the partition function of B-
branes and the perturbative partition function of the A-model. This is reminiscent of
the topological S-duality [@] although the details seem very different.
Meanwhile, the sum over shifts in ¢ can be written as shifts in the Kihler moduli

1
th -t — A 4.16
— + o Gtop ( )
is entirely analogous to the sum in the 2DYM/topological string correspondence [,
t — t + migiop, t —t—mlgop (4.17)

(The apparent discrepancy of 2mi is because t = 27i X' /X in [[f].) This was interpreted
in [B] as a summation over contribution from sectors with RR 2-form fluxes. It would be

nice to understand the analogous statement in our context.

60f course, it is still nontrivial that the summand is essentially |Z;o,|* times a measure factor.
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4.4 Non-perturbative corrections

The full result of the OSV transform for the A/ = 8 black hole (R.2(0) can be thought of as
the non-perturbative completion of the topological string amplitude on 7. Let us briefly
discuss the nature of the non-perturbative corrections. They are suppressed by exponential

factors of the form

exp(—e ") = exp(—Vrs /g, - (4.18)
Note that the exponent is proportional to 1/ gt20p rather than 1/g:,p, which is reminiscent of
the instanton corrections in a gauge theory rather than D-instanton effects in string theory.

The nonperturbative corrections in the OSV transform for the N' = 4 black hole is
discussed in Appendix A. We find that again they behave as exp(—aV/g7,,), although
unlike the A = 8 case, the exponent « is bounded both from above and from below.

It would be interesting to understand the physical meaning of these corrections, and
in particular the possible connection to the baby universe interpretation as in [L1]. We
should note that the N' = 8 black hole degeneracy was derived in [R1] while ignoring the
effects due to fragmentation. Such effects might need to be taken into account in order
to accurately match the nonperturbative corrections with multi-black hole states and the
corresponding interpretation in the topological string.
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A. Nonperturbative corrections to the N'=4 OSV transform

In this appendix, we will analyze the corrections to the N/ = 4 OSV transform, the ... in
section . We will show that these corrections are nonperturbative in g, justifying our
neglect of them in the text.

As discussed in section f§, these corrections come from the residues of rational quadratic
divisors other than (B.J). Following the appendix of [2J], the most general RQD is charac-
terized by five integers v = (k,l,m,a, c) satisfying one constraint

4ac — 4kl +m? —1=0. (A.1)
The RQD is then

alpc — V) +kp+lo+mr+c=0. (A.2)

@® L _
2mipl? 2mip

Substituting o = r + %, we can solve for p:

L, ((a—m)mp! +iagh)? — (xp')®

plv) = at 2ampt (2kmpl — iag?)

(A.3)
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The RQD (B.2) corresponds to a = m = 1, k = [ = ¢ = 0, in which case ([A.3) reduces to

the third equation of (B.10).
Repeating the calculation in section B.1, we see that the general RQD contributes an
amount to Zx—4(p, ¢) which goes like

SNy ~ eWiP(V)CMNpMpN ) (A.4)

Let us now compare this with the contribution from (B-3), which goes like e™+Cmn PN
We have

0ZN=4 _ eTip(vV)=p) Crunp™p™ (A.5)
ZN =4
The real part of this exponent is
§F = Re [rmi(p(v) — p*)CMNpMpN} (A.6)

_712C’]\/[Np]\/[pr1 ((a —m)¢°® + 2ke")? + (2mkpt)? + (a® — 1)(¢)?
2¢) ( (2mkp!)? + (ag?)? ) '

This quantity is clearly negative, provided we assume that CMN’;# > 0 and take a > 1.

The condition a > 1 follows from the contour of p integration. The contour must
necessarily avoid the a = 0 RQDs, since otherwise the a = 0 RQDs would dominate the
exact degeneracies and ruin the large charge asymptotics Qar—4(p, q) ~ eSet(P:a)

In fact, we are free to choose the contour such that only a single a = 1 RQD, say
k=1=c¢=0and m = 1, contributes. The reason is that the other « = 1 RQDs are
related to this one by integer shifts of p, v, o, and so they all contribute identically to
Znr=4(p, ¢). This is nontrivial from the point of view of the above expressions; however, it
is easy to see if we write Zn—4(p, ¢) as

1_1pt—1

IN—yg = (pl 5 Z Z Zhry(p, #° + 2mik®, o' + 2mik!, ™M) (A.7)
k9=0 k1=0
with
ZN (A.8)
_ 27{ dp eﬂiPC’MNpMpN-I-;5701CMNQMQN-I-;f—iPMQM—qﬁMQM
qm 2mp17V = zmpl )

The (a = 1,k,l,m,c) RQD with o = ¢>‘;1 and v = 2m 5o + 2 can be brought to the form
(a =1,0,0,1,0) by shifting ¢* and ¢° by 27ip's and 27sz1t for some integers s and ¢. Since
Z\r—y is clearly invariant under such shifts, this shows that all the a = 1 RQDs contribute
identically to Zar—4. By choosing the contour so that only one a = 1 RQD contributes, we
avoid overcounting.

Therefore, we have shown that aside from the contribution of the a = 1 RQD (B.9), the
only other contributions to the black hole partition function are from RQDs with a > 1,
and all of these are nonperturbative. Let us now examine the a > 1 RQDs in more detail.
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Although we have considered the most general RQD, we do not expect all of them to
contribute to the exact degeneracies, for the following reason. ® is only holomorphic in the
Siegel upper half plane, defined by

19| = det Im (5 ”> >0 (A.9)
g

Therefore, we should only consider the contributions of RQDs which satisfy (A.g). Substi-

tuting once again o = %, v = 27‘5})1 + %, and p = p(v), we find a simple relation between
OF and ||Q|]:
2 ZC M, N, 1 1
op = L ZMND PP (HQH - —> . (A.10)
1) 4

Therefore, the exponential suppression (a negative quantity) of the a > 1 RQDs is bounded
from below by

1272Cynp™ p™p!
4 o '
In addition, one can easily deduce from ([A.6) an upper bound on 6 F for a > 1. Combining

OF > (A.11)

these, we conclude that the exponential suppression of the subleading RQDs is contained
within a tight band:
_m*Cunp™pNp! 3 mCunpMpNp!

5F < -2
260 <o s T 240

(A.12)

The lower bound on J§F is intriguing. It should be contrasted with the very different
behavior of the nonperturbative corrections in the ' = 8 case (2.2(), where we found a
series of successively smaller nonperturbative corrections.

References

[1] H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string,

Rev. D 70 (2004) 106007 [hep-th/040514§].

[2] C. Vafa, Two dimensional Yang-Mills, black holes and topological strings, hep—th/040605§.

[3] A. Dabholkar, Ezact counting of black hole microstates, |Phys. Rev. Lett. 94 (2005) 241301
[hep-th/0409149).

[4] M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2D Yang-Mills and
non-perturbative topological strings, [Nucl. Phys. B 715 (2005) 304 |hep-th/041128(].

[6] E.P. Verlinde, Attractors and the holomorphic anomaly, hep-th/0412139.

[6] G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dyonic
N = 4 string states and black hole entropy, JHEP 12 (2004) 075 [hep-th/0412287].

[7] A. Sen, Black holes, elementary strings and holomorphic anomaly, JHEP 07 (2005) 063
[hep-th/050212§].

[8] A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Ezact and asymptotic degeneracies of
small black holes, |JHEP 08 (2005) 021| [hep-th/0502157].

,17,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C106007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C106007
http://xxx.lanl.gov/abs/hep-th/0405146
http://xxx.lanl.gov/abs/hep-th/0406058
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C94%2C241301
http://xxx.lanl.gov/abs/hep-th/0409148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB715%2C304
http://xxx.lanl.gov/abs/hep-th/0411280
http://xxx.lanl.gov/abs/hep-th/0412139
http://jhep.sissa.it/stdsearch?paper=12%282004%29075
http://xxx.lanl.gov/abs/hep-th/0412287
http://jhep.sissa.it/stdsearch?paper=07%282005%29063
http://xxx.lanl.gov/abs/hep-th/0502126
http://jhep.sissa.it/stdsearch?paper=08%282005%29021
http://xxx.lanl.gov/abs/hep-th/0502157

[9] A. Sen, Black holes and the spectrum of half-BPS states in N = 4 supersymmetric string
theory, hep—th/0504008.

[10] M. Aganagic, A. Neitzke and C. Vafa, BPS microstates and the open topological string wave
function, hep-th/0504054.

[11] R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory,

Rev. D T3 (2006) 066009 [hep-th/0504221]].

[12] A. Sen, Stretching the horizon of a higher dimensional small black hole, JHEP 07 (2005) 079
[hep-th/0505127.

[13] A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity,

VHEP 09 (2005) 038 [hep-th/0506177].
[14] B. Pioline, BPS black hole degeneracies and minimal automorphic representations, JHEP 0§

(2005) 071 [hep-th/0506224).

[15] A. Dabholkar, F. Denef, G.W. Moore and B. Pioline, Precision counting of small black holes,
VHEP 10 (2005) 09€ [hep-th/0507014].

[16] J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12

(1997) 009 [hep-th/9711053].

[17] G. Lopes Cardoso, B. de Wit and T. Mohaupt, Corrections to macroscopic supersymmetric
black-hole entropy, |Phys. Lett. B 451 (1999) 309 [hep-th/9812082.

[18] A. Dabholkar and J.A. Harvey, Nonrenormalization of the superstring tension,

Lett. 63 (1989) 478.

[19] A. Dabholkar, G.W. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Superstrings and solitons,

Phys. B 340 (1990) 33.

[20] D. Shih, A. Strominger and X. Yin, Recounting dyons in N = 4 string theory,
lhep-th/0505094.

[21] D. Shih, A. Strominger and X. Yin, Counting dyons in N = 8 string theory, hep-th/0506151].
[22] R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory,

Phys. B 484 (1997) 543 [hep-th/9607024].

[23] S. Ferrara and R. Kallosh, Universality of supersymmetric attractors, |Phys. Rev. D 54

(1996) 1524 [hep-th/9603090].

[24] D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes,
VHEP 02 (2006) 024 [hep-th/0503217.

[25] E. Cremmer and B. Julia, The SO(8) supergravity, INucl. Phys. B 159 (1979) 141.

[26] V. Balasubramanian, How to count the states of extremal black holes in N = 8 supergravity,
hep-th/971221§.

[27] R. Kallosh and B. Kol, E; symmetric area of the black hole horizon, [Phys. Rev. D 53 (1996)|

5344 [hep-th/9602014].

[28] J.A. Harvey and G.W. Moore, Fivebrane instantons and R? couplings in N = 4 string theory,
[Phys. Rev. D 57 (1998) 2323 [hep-th/9610237].

[29] N. Nekrasov, H. Ooguri and C. Vafa, S-duality and topological strings, JHEP 10 (2004) 009
[hep-th/0403167].

,18,


http://xxx.lanl.gov/abs/hep-th/0504005
http://xxx.lanl.gov/abs/hep-th/0504054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C066002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C066002
http://xxx.lanl.gov/abs/hep-th/0504221
http://jhep.sissa.it/stdsearch?paper=07%282005%29073
http://xxx.lanl.gov/abs/hep-th/0505122
http://jhep.sissa.it/stdsearch?paper=09%282005%29038
http://xxx.lanl.gov/abs/hep-th/0506177
http://jhep.sissa.it/stdsearch?paper=08%282005%29071
http://jhep.sissa.it/stdsearch?paper=08%282005%29071
http://xxx.lanl.gov/abs/hep-th/0506228
http://jhep.sissa.it/stdsearch?paper=10%282005%29096
http://xxx.lanl.gov/abs/hep-th/0507014
http://jhep.sissa.it/stdsearch?paper=12%281997%29002
http://jhep.sissa.it/stdsearch?paper=12%281997%29002
http://xxx.lanl.gov/abs/hep-th/9711053
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB451%2C309
http://xxx.lanl.gov/abs/hep-th/9812082
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C63%2C478
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C63%2C478
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB340%2C33
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB340%2C33
http://xxx.lanl.gov/abs/hep-th/0505094
http://xxx.lanl.gov/abs/hep-th/0506151
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB484%2C543
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB484%2C543
http://xxx.lanl.gov/abs/hep-th/9607026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C1525
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C1525
http://xxx.lanl.gov/abs/hep-th/9603090
http://jhep.sissa.it/stdsearch?paper=02%282006%29024
http://xxx.lanl.gov/abs/hep-th/0503217
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB159%2C141
http://xxx.lanl.gov/abs/hep-th/9712215
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD53%2C5344
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD53%2C5344
http://xxx.lanl.gov/abs/hep-th/9602014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD57%2C2323
http://xxx.lanl.gov/abs/hep-th/9610237
http://jhep.sissa.it/stdsearch?paper=10%282004%29009
http://xxx.lanl.gov/abs/hep-th/0403167

